The City of Dunedin Water Division is pleased to present this year’s Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. The report also includes information about conservation, services we provide and other things you should know about your drinking water. Our constant goal is to provide a safe and dependable supply of drinking water and to continually improve the water treatment process. We are committed to ensuring the quality of the water you drink and the protection of our ground water, which is the source of our water. Our drinking water originates in the Floridan aquifer and is pumped out of the ground by wells located throughout the City of Dunedin. The untreated water is transported through underground pipes to our Reverse Osmosis Water Treatment Plant where it is purified, chlorinated for disinfection purposes, and fluoridated for dental health purposes before it is distributed to customers.

CITY OF DUNEDIN DRINKING WATER MEETS ALL STATE AND FEDERAL STANDARDS

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people who have HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Environmental Protection Agency/Center for Disease Control (EPA/CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Source Water Assessment

In 2009 the Florida Department of Environmental Protection (FDEP) performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. According to the assessment, there are 44 potential sources of contamination identified for our system, with susceptibility levels ranging from low to high. The potential sources of contamination include petroleum storage tanks and dry cleaning facilities. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp or they can be obtained from the City of Dunedin Water Division located at 1401 County Road 1, Dunedin, FL 34698 or by calling 727-298-3100.

General Contaminate Source Information

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. The source of the City’s drinking water is ground water. Ground water is one part of the hydrologic cycle. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- **A** Microbial Contaminants, such as viruses and bacteria, which can come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **B** Inorganic Contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **C** Pesticides and Herbicides, which may come from a variety of sources such as agriculture, fertilizers, urban stormwater runoff, and residential uses.
- **D** Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- **E** Radioactive Contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 800-426-4791.

Water Conservation

In 2009, your Water Division distributed 1.16 billion gallons of water to City of Dunedin customers. That is an average of 3.2 million gallons per day, or 67.3 gallons per person per day calculated by taking the total number of single family accounts multiplied by 2.31 persons per household, and dividing the total number of multi-family accounts multiplied by 1.31 persons per household and divided into the total water usage by these customers. The City of Dunedin has replaced thousands of feet of water mains to ensure water quality, water pressure, and reduce leakage in the distribution system. During the next year, the City of Dunedin will continue this waterline replacement program. Leaks are the biggest water waster. Even a small faucet leak can waste 300 or more gallons of water per month! Take a few minutes to find out if you have a leak in your home; call us if you need help.

Use your water meter to check for leaks

1. Turn off all faucets and water-using appliances and make sure no one uses water during the testing period. Remember to wait for the hot water heater and ice cube makers to refill, and for regeneration of water softeners.
2. Go to your water meter and record the current reading. Wait 30 minutes. (Remember: no water should be used during this period.)
3. Read the meter again. If the reading has changed, you have a leak.
4. If you cannot find the leak, you should consult a plumber.

Water conservation check list

- Have you checked all faucets for leaks?
- Have you checked all toilets for leaks?
- Drop food coloring in the toilet tank, if color comes out in the bowl you have a leak.
- Have you installed low flow or dual flush toilets?
- Do you use low flow shower heads and keep your showers shorter than 5 minutes?
- Do you turn off the water when you brush your teeth or shave?
- Do you turn off the water when you fill hot water heaters or dishwashers?
- Do you use water-saving devices or try to repair irrigation systems?

Typically, outdoor water use accounts for up to 50 percent of water consumed by households. You can reduce water consumption by taking a few simple steps. Periodically, check irrigation system timer performance and effectiveness and avoid overspray. Utilize Florida-friendly and drought-tolerant landscaping. Upon request the City will set irrigation timers to the watering schedule for your address.

Outdoor water saving tips

- Keep your grass at least 3-4 inches high between mowings
- Use shutoff devices or drip irrigation for outdoor watering
- Avoid watering on windy days
- Collect rain water to irrigate plants

Contact Information

The City of Dunedin Commission meets at 6:30 p.m. on the first and third Thursday of each month at City Hall, 542 Main Street. For more information, visit the City’s Web Site, www.dunedingov.com or call (727) 298-3001. For information regarding this report, arrange a water plant tour, or to obtain this report in a different format, please contact the Water Division at (727) 298-3100.
In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Over 80 compounds are evaluated for the Annual Water Quality Report. Although all of these tests were performed, only those substances listed below in the Water Quality Table were found. The level of contaminants found in our drinking water were below the maximum contaminant level (MCL) allowed by the EPA. This report is based on the results of our monitoring for the period January 1 to December 31, 2009 for the City of Dunedin Public Water System (PWS) ID# 6520486. As authorized and approved by the United States Environmental Protection Agency (USEPA), the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. In this table, you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Dunedin’s Water Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at http://www.epa.gov/safewater/lead.

Lead and Copper (Tap Water)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>Action Level</th>
<th>MCLG</th>
<th>With Percentile Result</th>
<th>No. of sample sites exceeding the AL</th>
<th>Source of Contamination</th>
<th>Action Level Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (1Tap Water)</td>
<td>ppb</td>
<td>15</td>
<td>0</td>
<td>2.6</td>
<td>1</td>
<td>Corrosion of household plumbing systems</td>
<td>No</td>
<td>8/19/2008</td>
</tr>
<tr>
<td>Copper (2 Tap Water)</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
<td>0.084</td>
<td>0</td>
<td>Corrosion of household plumbing systems</td>
<td>No</td>
<td>8/12/2008</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Source of Contaminant</th>
<th>MCL Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (Incl. Uranium)</td>
<td>pCi/L</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>NA (5)</td>
<td>Erosion of natural deposits</td>
<td>No</td>
<td>5/20/2008</td>
</tr>
<tr>
<td>Radium-226</td>
<td>pCi/L</td>
<td>5*</td>
<td>0</td>
<td>0.2</td>
<td>NA (5)</td>
<td>Radiation from glass and electronics production wastes</td>
<td>No</td>
<td>5/20/2008</td>
</tr>
<tr>
<td>Radion-228</td>
<td>pCi/L</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>NA (5)</td>
<td>Dissolving of natural deposits</td>
<td>No</td>
<td>5/20/2008</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>30</td>
<td>0</td>
<td>0.15</td>
<td>NA (5)</td>
<td>Dissolving of natural deposits</td>
<td>No</td>
<td>5/20/2008</td>
</tr>
</tbody>
</table>

Radiocative Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL or MRLD</th>
<th>MCLG or MRDLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Source of Contaminant</th>
<th>MCL Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>MRLD=4</td>
<td>MRLD=G</td>
<td>0.7</td>
<td>0.7-27</td>
<td>Water additive used to control microbes</td>
<td>No</td>
<td>10/8-12/09</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppm</td>
<td>MCL=40</td>
<td>MCLG=0</td>
<td>7.13</td>
<td>4.79/8.05</td>
<td>By product of drinking water chlorination</td>
<td>No</td>
<td>(0)</td>
</tr>
<tr>
<td>Haloacids (Haloacetic Acids)</td>
<td>ppm</td>
<td>MCL=40</td>
<td>MCLG=G</td>
<td>0.2</td>
<td>0.01-0.17</td>
<td>By product of drinking water chlorination</td>
<td>No</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Microbiological Contaminants

Total coliform bacteria: Highest Monthly Percentage/Number is the highest monthly percentage of positive samples for systems collecting at least 50 samples per month

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Monthly Percentage / Number</th>
<th>Range</th>
<th>Likely Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>%</td>
<td>5/2008</td>
<td>5/2008</td>
<td>1 of 50=2%</td>
<td>0</td>
<td>Groundwater, surface water, municipal water, sewage, soil, septic tanks</td>
</tr>
</tbody>
</table>

Definitions and Terms

- **Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- **Footnotes:**
 1. 2.6 ppb lead represents the 90th percentile of samples collected. The range is the number of samples above the Action Level (AL). Sampled triennially. The next triennial sampling will be done in the Summer of 2011.
 2. 0.054 ppm copper represents the 90th percentile of samples collected. The range is the number of samples above the Action Level (AL). Sampled triennially. The next triennial sampling will be done in the Summer of 2011.
 3. In 2009 ground water pumped from the City of Dunedin water supply wells had a natural fluoride level of 0.2 ppm. This level was elevated to achieve FDEP’s maximum level of between 0.7 & 1.3 ppm.
 4. Total Trihalomethanes (TTM) and Haloacids (Haloacetic Acids) (HAA5) samples were taken on a quarterly schedule in the months of February, May, August, and November.
 5. N/A means that this sample was the only sample taken for that constituent.

* Combined Radium 226/228