The City of Dunedin Water Division is pleased to present this year’s Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. The report also includes information about conservation, services we provide and other things you should know about your drinking water. Our constant goal is to provide a safe and dependable supply of drinking water and to continually improve the water treatment process. We are committed to ensuring the quality of the water you drink, the protection of our groundwater, which is the source of our water. Our drinking water enterates in the Floridan aquifer and is pumped out of the ground by wells located throughout the City of Dunedin. The untreated water is transmitted through a network of underground pipes to our Reverse Osmosis Water Treatment Plant where it is purified, chlorinated for disinfection purposes, and fluoridated for dental health purposes before it is distributed to customers.

CITY OF DUNEDIN DRINKING WATER MEETS ALL STATE AND FEDERAL STANDARDS

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people who have HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Environmental Protection Agency/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 800-426-4791.

General Contaminant Source Information

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. The source of the City’s drinking water is ground water. Ground water is one part of the hydrologic cycle. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- **(A) Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **(B) Inorganic Contaminants**, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **(C) Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, fertilizers, urban stormwater runoff, and residential uses.
- **(D) Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- **(E) Radioactive Contaminants**, which can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) regulates contaminants which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 800-426-4791.

Source Water Assessment

In 2012 the Florida Department of Environmental Protection (FDEP) performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. According to the assessment, there are 12 potential sources of contamination identified for our system, with susceptibility levels ranging from low to moderate. The potential sources of contamination include petroleum storage tanks and dry cleaning facilities. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp or they can be obtained from the City of Dunedin Water Division located at 1401 County Road 1, Dunedin, FL 34698 or by calling 727-298-3100.

Water Conservation

In 2012, your Water Division distributed 1.13 billion gallons of water to City of Dunedin customers. That is an average of 3.1 million gallons per day, or 63.0 gallons per person per day calculated by taking the total number of single family accounts multiplied by 2.31 persons per household and the total number of multi-family accounts multiplied by 1.31 persons per household and divided into the total metered water usage by these customers. The City of Dunedin has replaced thousands of feet of water mains to ensure water quality, water pressure, and reduce leakage in the distribution system. During the next year, the City of Dunedin will continue this waterline replacement program. Leaks in the biggest water water. Even a small faucet leak can waste 300 or more gallons of water per month! Take a few minutes to find out if you have a leak in your home; call us if you need help.

Use your water meter to check for leaks

1. Turn off all faucets and water-using appliances and make sure no one uses water during the testing period. Remember to wait for the hot water heater and ice cube makers to refill, and for regeneration of water softeners.
2. Go to your water meter and record the current reading. Wait 30 minutes. (Remember: No water should be used during this period.)
3. Read the meter again. If the reading has changed, you have a leak.
4. If you cannot find the leak, you should consult a plumber.

Indoor water conservation check list

- **Have you checked all faucets & toilets for leaks?**
- **Do you use low flow shower heads and limit showers to 5 minutes or less?**
- **Do you shut off the water when you brush your teeth or shave?**
- **Do you only run the dishwasher and ice cube makers to refill?**
- **Do you fill a container with water and refrigerate it for a cold drink?**
- **Do you have replaced leaky plugs in sinks & bathtubs?**
- **Do you only run the dishwasher and ice cube makers to refill?**
- **Do you fill a container with water and refrigerate it for a cold drink?**
- **Do you have replaced leaky plugs in sinks & bathtubs?**

Typically, outdoor water use accounts for up to 50 percent of water consumed by households. You can reduce water consumption by taking a few simple steps. Periodically, check irrigation system timer performance and effectiveness and avoid overspray. Adjust your irrigation timer when you change your clocks. Upon request the City will set irrigation timers to the watering schedule for your address. Utilize Florida-friendly and drought-tolerant landscaping. Don’t water during the heat of the day. Skip a week of watering during the winter months to make your yard more drought-tolerant.

Outdoor water saving tips

Visit Dunedin’s website @ http://www.dunedingov.com/H2ORules to view the latest water use restrictions

- **Keep your grass at least 3-4 inches high between mowings**
- **Use shut-off devices or drip irrigation for watering**
- **Sweep/blow off sidewalks and driveways rather than hosing them off**
- **Avoid watering on windy days**
- **Collect rain water with a rain barrel or other catchment to irrigate plants**
- **Use 2-3 inches of mulch around trees and flowerbeds**

Contact Information

The City of Dunedin Commission meets at 6:30 p.m. on the first and third Thursday of each month at City Hall, 542 Main Street. For more information, visit the City’s Web Site, www.dunedingov.com or call (727) 298-3006. For information regarding this report, arrange a water plant tour, or to obtain this report in a different format, please contact the Water Division at (727) 298-3100.
Definitions and Terms

Maximum Contaminant Level (MCL)
- The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Microbiological Contaminants

- Total coliform bacteria: The highest monthly percentage/number is the highest monthly percentage of positive samples for systems collecting at least 40 samples per month.

Lead and Copper (Tap Water)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Source of Contaminant</th>
<th>MCL Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (1) Tap Water</td>
<td>ppb</td>
<td>1.5</td>
<td>0.05</td>
<td>0.006</td>
<td>No</td>
<td>Corrosion of household plumbing systems</td>
<td>8/2011</td>
<td></td>
</tr>
<tr>
<td>Copper (2) Tap Water</td>
<td>ppm</td>
<td>1.3</td>
<td>1</td>
<td>1.3</td>
<td>No</td>
<td>Corrosion of household plumbing systems</td>
<td>8/2011</td>
<td></td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Source of Contaminant</th>
<th>MCL Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>ppb</td>
<td>6</td>
<td>0.45</td>
<td>N/A (5)</td>
<td>Discharge from pyrite-processing facilities; coking; cements; electronic solvents</td>
<td>No</td>
<td>7/31/2012</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppm</td>
<td>10</td>
<td>1.5</td>
<td>N/A (5)</td>
<td>Erosion of natural deposits; sewage from orchards; sewage from landfills; electronic; electronic solvents</td>
<td>No</td>
<td>7/31/2012</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2.087</td>
<td>N/A (5)</td>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories; Water additives which promote stronger teeth at the optimum level of 0.7 ppm</td>
<td>No</td>
<td>7/31/2012</td>
<td></td>
</tr>
<tr>
<td>Beryllium (5)</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>0.08</td>
<td>N/A (5)</td>
<td>Inorganic and organic solvents; discharge from power plants; discharge from metal refineries; corrosion of natural deposits</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
<tr>
<td>Nickel</td>
<td>ppb</td>
<td>100</td>
<td>N/A</td>
<td>1.2</td>
<td>Discharge from foundries and refining operations; Natural occurrence in soil</td>
<td>No</td>
<td>7/31/2012</td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>0.10</td>
<td>N/A (5)</td>
<td>Leaching from waste tanks, sewage from fertilizer and aluminum factories; Water additives which promote stronger teeth</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
<tr>
<td>Selenium</td>
<td>ppb</td>
<td>50</td>
<td>50</td>
<td>6.1</td>
<td>N/A (5)</td>
<td>Discharge from organoselenium compounds; corrosion of natural deposits; discharge from batteries</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>160</td>
<td>N/A</td>
<td>98</td>
<td>N/A (5)</td>
<td>Discharge from sewage treatment facilities between the land surface and the soil</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Source of Contaminant</th>
<th>MCL Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>ppm</td>
<td>40</td>
<td>0</td>
<td>0.3</td>
<td>N/A (5)</td>
<td>Discharge from chemical facilities</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
</tbody>
</table>

TTHMs and Stage 1 Disinfectant/Disinfection By-Product (D/DBP) Parameters

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Source of Contaminant</th>
<th>MCL Violation Y/N</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>MCLR or MRL</td>
<td>MCL or MRDL</td>
<td>0.8</td>
<td>0.8</td>
<td>Water additive used to control microbes</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA3)</td>
<td>ppm</td>
<td>MCLR</td>
<td>MCLG</td>
<td>0.09</td>
<td>0.09</td>
<td>By-products of drinking water chlorination</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppm</td>
<td>MCLR</td>
<td>MCLG</td>
<td>6.6</td>
<td>6.6</td>
<td>By-products of drinking water chlorination</td>
<td>No</td>
<td>7/31/2012</td>
</tr>
</tbody>
</table>

Lead and Copper (Tap Water)

- The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Microbiological Contaminants

- Total coliform bacteria: The highest monthly percentage/number is the highest monthly percentage of positive samples for systems collecting at least 40 samples per month.

Definitions and Terms

(1) 0.81 ppb lead represents the 90th percentile of samples collected. The range is the number of samples above the Action Level (AL).

(2) 0.036 ppm copper represents the 90th percentile of samples collected. The range is the number of samples above the Action Level (AL).

(3) In 2012 ground water pumped from the City of Dunedin water supply wells had a natural fluoride level of 0.2 ppm. This level was elevated to achieve FDEP’s optimum level of 0.7 ppm.

(4) Total Trihalomethanes (TTHM) and Haloacetic Acids (Five) (HAA5) samples were taken on a quarterly schedule in the months of February, May, August, and November.

(5) N/A means that this sample was the only sample taken for that constituent.